Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.838
Filtrar
1.
Nature ; 628(8006): 47-56, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570716

RESUMO

Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.


Assuntos
Biologia Celular , Células , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Microscopia Crioeletrônica/tendências , Tomografia com Microscopia Eletrônica/métodos , Tomografia com Microscopia Eletrônica/tendências , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Biologia Celular/instrumentação , Células/química , Células/citologia , Células/metabolismo , Células/ultraestrutura , Humanos
2.
Chem Rev ; 124(8): 4734-4777, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579177

RESUMO

This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.


Assuntos
RNA , RNA/química , RNA/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Animais , Conformação de Ácido Nucleico
3.
Food Res Int ; 184: 114247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609226

RESUMO

Konjac glucomannan (KGM) can significantly prolong gastrointestinal digestion. However, it is still worth investigating whether the macromolecular crowding (MMC) induced by KGM is correlated with digestion. In this paper, the MMC effect was quantified by fluorescence resonance energy transfer and microrheology, and the digests of starch, protein, and oil were determined. The digestive enzymes were analyzed by enzyme reaction kinetic and fluorescence quenching. The results showed that higher molecular weight (604.85 âˆ¼ 1002.21 kDa) KGM created a larger MMC (>0.8), and influenced the digestion of macronutrients; the digests of starch, protein, and oil all decreased significantly. MMC induced by KGM decreased the Michaelis-Menten constants (Km and Vmax) of pancreatic α-amylase (PPA), pepsin (PEP), and pancreatic lipase (PPL). The larger MMC (>0.8) induced by KGM resulted in the decrease of fluorescence quenching constants (Ksv) in PPA and PPL, and the increase of Ksv in PEP. Therefore, varying degrees of MMC induced by KGM could play a role in regulating digestion and the inhibitory effect on digestion was more significant in a relatively more crowded environment induced by KGM. This study provides theoretical support for the strategies of nutrient digestion regulation from the perspective of MMC caused by dietary fiber.


Assuntos
Mananas , Pepsina A , Espectrometria de Fluorescência , Substâncias Macromoleculares , alfa-Amilases Pancreáticas , Amido
4.
Methods Mol Biol ; 2787: 315-332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656500

RESUMO

Structural insights into macromolecular and protein complexes provide key clues about the molecular basis of the function. Cryogenic electron microscopy (cryo-EM) has emerged as a powerful structural biology method for studying protein and macromolecular structures at high resolution in both native and near-native states. Despite the ability to get detailed structural insights into the processes underlying protein function using cryo-EM, there has been hesitancy amongst plant biologists to apply the method for biomolecular interaction studies. This is largely evident from the relatively fewer structural depositions of proteins and protein complexes from plant origin in electron microscopy databank. Even though the progress has been slow, cryo-EM has significantly contributed to our understanding of the molecular biology processes underlying photosynthesis, energy transfer in plants, besides viruses infecting plants. This chapter introduces sample preparation for both negative-staining electron microscopy (NSEM) and cryo-EM for plant proteins and macromolecular complexes and data analysis using single particle analysis for beginners.


Assuntos
Microscopia Crioeletrônica , Substâncias Macromoleculares , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestrutura , Proteínas de Plantas/química , Coloração Negativa/métodos
5.
Sci Rep ; 14(1): 9369, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653774

RESUMO

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Assuntos
Sistema Digestório , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Substâncias Macromoleculares , Carbamazepina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bivalves/efeitos dos fármacos , Bivalves/química
6.
Nat Commun ; 15(1): 2265, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480681

RESUMO

Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Desenho de Fármacos , Humanos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química , Ciclo Celular
7.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553121

RESUMO

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Peptídeos , Substâncias Macromoleculares , Adsorção , Impressão Molecular/métodos
8.
Soft Matter ; 20(15): 3271-3282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456237

RESUMO

Macromolecular crowding can induce the collapse of a single long polymer into a globular form due to depletion forces of entropic nature. This phenomenon has been shown to play a significant role in compacting the genome within the bacterium Escherichia coli into a well-defined region of the cell known as the nucleoid. Motivated by the biological significance of this process, numerous theoretical and computational studies have searched for the primary determinants of the behavior of polymer-crowder phases. However, our understanding of this process remains incomplete and there is debate on a quantitatively unified description. In particular, different simulation studies with explicit crowders have proposed different order parameters as potential predictors for the collapse transition. In this work, we present a comprehensive analysis of published simulation data obtained from different sources. Based on the common behavior we find in this data, we develop a unified phenomenological model that we show to be predictive. Finally, to further validate the accuracy of the model, we conduct new simulations on polymers of various sizes, and investigate the role of jamming of the crowders.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Substâncias Macromoleculares
9.
Int J Biol Macromol ; 265(Pt 1): 131007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508566

RESUMO

Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.


Assuntos
Produtos Biológicos , Polissacarídeos , Polissacarídeos/farmacologia , Oligossacarídeos/farmacologia , Organismos Aquáticos , Substâncias Macromoleculares , Anti-Inflamatórios/farmacologia
10.
Adv Exp Med Biol ; 3234: 89-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507202

RESUMO

Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.


Assuntos
Proteínas , RNA , Espectrometria de Fluorescência , Proteínas/química , Substâncias Macromoleculares , Ultracentrifugação/métodos
11.
Adv Exp Med Biol ; 3234: 109-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507203

RESUMO

Nuclear magnetic resonance (NMR) and native mass spectrometry (MS) are mature physicochemical techniques with long histories and important applications. NMR spectroscopy provides detailed information about the structure, dynamics, interactions, and chemical environment of biomolecules. MS is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity, and speed. The two techniques offer unique advantages and provide solid tools for structural biology. In the present review, we discuss their individual merits in the context of their applications to structural studies in biology with specific focus on protein interactions and evaluate their limitations. We provide specific examples in which these techniques can complement each other, providing new information on the same scientific case. We discuss how the field may develop and what challenges are expected in the future. Overall, the combination of NMR and MS plays an increasingly important role in integrative structural biology, assisting scientists in deciphering the three-dimensional structure of composite macromolecular assemblies.


Assuntos
Imageamento por Ressonância Magnética , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética , Substâncias Macromoleculares/química , Ressonância Magnética Nuclear Biomolecular/métodos
12.
Adv Exp Med Biol ; 3234: 125-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507204

RESUMO

X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.


Assuntos
Biologia Molecular , Proteínas , Cristalografia por Raios X , Microscopia Crioeletrônica/métodos , Proteínas/química , Substâncias Macromoleculares/química
13.
Adv Exp Med Biol ; 3234: 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507206

RESUMO

Small angle X-ray scattering (SAXS) is a versatile technique that can provide unique insights in the solution structure of macromolecules and their complexes, covering the size range from small peptides to complete viral assemblies. Technological and conceptual advances in the last two decades have tremendously improved the accessibility of the technique and transformed it into an indispensable tool for structural biology. In this chapter we introduce and discuss several approaches to collecting SAXS data on macromolecular complexes, including several approaches to online chromatography. We include practical advice on experimental design and point out common pitfalls of the technique.


Assuntos
Cromatografia , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Substâncias Macromoleculares/química
14.
Adv Exp Med Biol ; 3234: 173-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507207

RESUMO

High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.


Assuntos
Elétrons , Proteínas de Membrana , Microscopia Crioeletrônica/métodos , Congelamento , Manejo de Espécimes/métodos , Substâncias Macromoleculares
15.
Adv Exp Med Biol ; 3234: 191-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507208

RESUMO

Recent advancements in cryo-electron microscopy (cryo-TEM) have enabled the determination of structures of macromolecular complexes at near-atomic resolution, establishing it as a pivotal tool in Structural Biology. This high resolution allows for the detection of ligands and substrates under physiological conditions. Enhancements in detectors and imaging devices, like phase plates, improve signal quality, facilitating the reconstruction of even smaller macromolecular complexes. The 100-kDa barrier has been surpassed, presenting new opportunities for pharmacological research and expanding the scope of crystallographic analyses in the pharmaceutical industry. Cryo-TEM produces vast data sets from minimal samples, and refined classification methods can identify different conformational states of macromolecular complexes, offering deeper insights into the functional characteristics of macromolecular systems. Additionally, cryo-TEM is paving the way for time-resolved microscopy, with rapid freezing techniques capturing snapshots of vital structural changes in biological complexes. Finally, in Structural Cell Biology, advanced cryo-TEM, through tomographic procedures, is revealing conformational changes related to the specific subcellular localization of macromolecular systems and their interactions within cells.


Assuntos
Biologia Molecular , Microscopia Crioeletrônica/métodos , Conformação Molecular , Substâncias Macromoleculares/química
16.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474502

RESUMO

Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.


Assuntos
Lacase , Lipase , Lipase/química , Lacase/química , Enzimas Imobilizadas/química , Catálise , Substâncias Macromoleculares
17.
Protein Sci ; 33(3): e4909, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358136

RESUMO

A flat mask-based model is almost universally used in macromolecular crystallography to account for disordered (bulk) solvent. This model assumes any voxel of the crystal unit cell that is not occupied by the atomic model is occupied by the solvent. The properties of this solvent are assumed to be exactly the same across the whole volume of the unit cell. While this is a reasonable approximation in practice, there are a number of scenarios where this model becomes suboptimal. In this work, we enumerate several of these scenarios and describe a new generalized approach to modeling the bulk-solvent which we refer to as mosaic bulk-solvent model. The mosaic bulk-solvent model allows nonuniform features of the solvent in the crystal to be accounted for in a computationally efficient way. It is implemented in the computational crystallography toolbox and the Phenix software.


Assuntos
Software , Solventes/química , Cristalografia por Raios X , Substâncias Macromoleculares/química
18.
PLoS Biol ; 22(2): e3002527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422113

RESUMO

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteínas , Proteinopatias TDP-43 , Humanos , Esclerose Amiotrófica Lateral/genética , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Ribonucleoproteínas/metabolismo , RNA , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
19.
J Phys Chem B ; 128(8): 1876-1883, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38355410

RESUMO

Genetic sequencing is a vital process that requires the transport of charged nucleic acids through transmembrane nanopores. Single-molecule studies show that macromolecular bulk crowding facilitates the capture of these polymers, leading to a high throughput of nanopore sensors. Motivated by these observations, a minimal discrete-state stochastic framework was developed to describe the role of poly(ethylene glycol) (PEG) crowders in varying concentrations in the transport of ssDNA through α-hemolysin nanopores. This theory suggested that the cooperative partitioning of polycationic PEGs controls the capture of ssDNA due to underlying electrostatic interactions. Herein, we investigate the impact of the size variation of PEGs on the capture event. Even though larger crowders attract ssDNA strongly to enhance its capture, our results show that considerable cooperative partitioning of PEGs is also required to achieve high interevent frequency. The exact analytical results are supported by existing single-molecule studies. Since real cellular conditions are heterogeneous, its influence on the ssDNA capture rate is studied by introducing a binary mixture of crowders. Our results indicate that the "polymer-pushing-polymer" concept possibly affects the capture rate depending on the mixture composition. These new findings provide valuable insights into the microscopic mechanism of the capture process, which eventually allows for accurate genome sequencing in crowded solutions.


Assuntos
Nanoporos , Nanoporos/ultraestrutura , DNA de Cadeia Simples , Polímeros , Substâncias Macromoleculares , Polietilenoglicóis
20.
Int J Biochem Cell Biol ; 169: 106536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307321

RESUMO

Deciphering the three-dimensional structures of macromolecules is of paramount importance for gaining insights into their functions and roles in human health and disease. Single particle cryoEM has emerged as a powerful technique that enables direct visualization of macromolecules and their complexes, and through subsequent averaging, achieve near atomic-level resolution. A major breakthrough was recently achieved with the determination of the apoferritin structure at true atomic resolution. In this review, we discuss the latest technological innovations across the entire single-particle workflow, which have been instrumental in driving the resolution revolution and in transforming cryoEM as a mainstream technique in structural biology. We illustrate these advancements using apoferritin as an example that has served as an excellent benchmark sample for assessing emerging technologies. We further explore whether the existing technology can routinely generate atomic structures of dynamic macromolecules that more accurately represent real-world samples, the limitations in the workflow, and the current approaches employed to overcome them.


Assuntos
Apoferritinas , Humanos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...